
IEICE TRANS. COMMUN., VOL.E102–B, NO.9 SEPTEMBER 2019
1885

PAPER
Suzaku: A Churn Resilient and Lookup-Efficient Key-Order
Preserving Structured Overlay Network

Kota ABE†,††a) and Yuuichi TERANISHI††,†††, Members

SUMMARY A key-order preserving structured overlay network is a
class of structured overlay network that preserves, in its structure, the or-
der of keys to support efficient range queries. This paper presents a novel
key-order preserving structured overlay network “Suzaku”. Similar to the
conventional Chord#, Suzaku uses a periodically updated finger table as a
routing table, but extends its uni-directional finger table to bi-directional,
which achieves dlog2 ne − 1 maximum lookup hops in the converged state.
Suzaku introduces active and passive bi-directional finger table update algo-
rithms for node insertion and deletion. This method maintains good lookup
performance (lookup hops increase nearly logarithmically against n) even
in churn situations. As well as its good performance, the algorithms of
Suzaku are simple and easy to implement. This paper describes the prin-
ciples of Suzaku, followed by simulation evaluations, in which it showed
better performance than the conventional networks, Chord# and Skip Graph.
key words: peer-to-peer systems, key-order preserving structured overlay
network, churn resilience

1. Introduction

Structured overlay networks provide a scalable lookup ser-
vice to locate target nodes (e.g., computers, network de-
vices), specified by a key, using autonomous and cooperative
routing among nodes on the application layer.

Interest has been increasing for a type of structured
overlay called Key-order preserving structured overlay net-
work (hereafter, KOPSON), which preserves the order of
keys in its structure. In KOPSON, when the keys of two
nodes are adjacent, these two nodes are also adjacent in the
overlay network. This property enables the execution of the
bulk lookup of nodes in arbitrary key intervals, which is
necessary for range queries. Such queries are useful for a
variety of distributed applications such as application layer
multicasts (ALMs), on-line games [1], distributed pub/sub
systems [2], and distributed spatial-temporal databases [3].

Existing structured overlays for distributed hash tables
such as Chord [4] use hash functions to distribute unevenly
distributed keys to nodes uniformly. However, because hash-
ing scatters adjacent keys to distant, unrelated nodes, over-
lays of this type do not support range queries. KOPSONs

Manuscript received April 23, 2018.
Manuscript revised January 12, 2019.
Manuscript publicized March 5, 2019.
†The author is with Graduate School of Engineering, Osaka

City University, Osaka-shi, 558-8585 Japan.
††The authors are with National Institute of Information and

Communications Technology, Koganei-shi, 184-8795 Japan.
†††The author is with Cybermedia Center, Osaka University,

Suita-shi, 565-0871 Japan.
a) E-mail: k-abe@osaka-cu.ac.jp
DOI: 10.1587/transcom.2018EBT0001

tackle the unevenly distributed keys issue through differ-
ent approaches. To preserve key-order in the network, they
do not use hash functions. Instead, they construct multi-
level routing tables whose pointers point to distant nodes to
achieve scalable lookup.

KOPSONs often suffer from node churn, i.e., a lot of
nodes are inserted or deleted in a short time. For exam-
ple, in a distributed pub/sub system, many subscribers may
subscribe to particular content in a short time (flash crowd),
and in ALM, all receivers may leave just after the session
finishes. Therefore, KOPSONs should have high churn ro-
bustness; they should keep good lookup performance even
when churn occurs.

There are roughly two approaches for implementing a
KOPSON. One approach is the periodic approach, which
gradually and continuously improves routing table entries
by periodic data collections. Mercury [5] and Chord#[6] are
of this type. This type of approach has a drawback in churn
situations; the maximum number of lookup hops becomes
O(n) (where n is the number of inserted nodes) after a large
number of nodes are inserted in a short time because several
data collection periods are required to obtain amature routing
table.

The other approach is the active approach, in which
each node actively updates routing table entries of itself and
other nodes on its insertion or deletion. Skip Graph [7] is
a well-known KOPSON of this type. The structure of Skip
Graph is determined by random values that each node gen-
erates. Skip Graph keeps a scalable average lookup perfor-
mance (O(log n) hops) with a high probability even in churn
situations. However, because random values are used to de-
termine the structure of the network, the maximum number
of hops is unbounded and typically is as many as several
folds of log2 n. In addition, as described later, implementing
Skip Graph is not straightforward.

In this paper, we propose a novel KOPSON Suzaku that
addresses drawbacks in the existing schemes. Suzaku has
the following notable properties:

1. When routing tables are converged, Suzaku achieves
dlog2 ne − 1 maximum lookup hops.

2. Even in the worst case, the number of lookup hops is
nearly logarithmically increased and faster than Skip
Graph when n ≤ around 100k.

3. The network traffic to maintain a Suzaku network is
small.

4. The algorithm is simple and easy to implement.

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers

1886
IEICE TRANS. COMMUN., VOL.E102–B, NO.9 SEPTEMBER 2019

The approach of Suzaku is a hybrid of the previously
mentioned approaches; routing table entries are updated both
periodically and actively. In addition, Suzaku introduces and
integrates several techniques such as bi-directional finger
tables, passive updates, and reverse pointers, whose details
are described in the following sections.

This paper is organized as follows. In Sect. 2, we review
related work. Section 3 describes Suzaku. Section 4 eval-
uates Suzaku by simulations and provides some discussion.
Finally, Sect. 5 summarizes this work.

2. Related Work

There have been many studies for efficient KOPSONs. In
this section, we describe three well-known and typical con-
ventional KOPSONs, namely, Mercury, Chord#, and Skip
Graph.

These KOPSONs do not use a hash function to disperse
keys. Nodes are sorted in the network by their keys to pre-
serve key-order. Each node has a successor pointer to the
next-key node and a predecessor pointer to the previous-key
node. Furthermore, in Mercury and Chord#, the succes-
sor of the max-key node points to the min-key node, and
the predecessor of the min-key node points to the max-key
node. Thus, they construct a doubly linked ring (hereafter,
“level 0 ring”). We assume that the clockwise direction is
the key-increasing direction.

The use of only successor and predecessor pointers is
insufficient to achieve a good lookup (routing) performance,
so each node alsomaintains long distance pointers, which are
stored in a routing table with multiple levels. Lower levels
of the table contain pointers to closer nodes in the key space,
and higher levels contain pointers to more distant nodes.

2.1 Mercury

Mercury is a periodic approach-based KOPSON. In Mer-
cury, each node estimates the density of keys in the network
by sampling nodes using random walks. Each node re-
constructs its routing table on the basis of the node counts
computed from the recent estimation. Such reconstruction
is initiated only when the number of nodes in the system
changes dramatically.

2.2 Chord#

Chord# is another periodic approach-based KOPSON, but it
does not use density estimation. The routing table of Chord#

is called a finger table. It is a one dimensional array whose
element (finger table entry [FTE]) is determined with the
following expression.

finger[i] =

successor (i = 0)
finger[i − 1]→

getFinger(i − 1) (i > 0)

For any node u, u.finger[0] is equal to u’s successor
pointer. u.finger[i] (i > 0) is updated by fetching finger[i−1]

of the node that is referenced by u.finger[i − 1]. To fetch
finger[i − 1], u sends a request message and receives a reply
message. All nodes update their finger tables periodically.
When no node insertions or deletions occurs, the finger tables
of all nodes are eventually converged. When converged,
finger[i] of each node points to the 2i distant node in the
clockwise direction and the maximum number of lookup
hops is bounded to dlog2 ne.

2.3 Skip Graph

Skip Graph is an active approach-based KOPSON. Each
Skip Graph node has a random value called membership
vector (MV). A routing table of Skip Graph is composed
of multiple levels of doubly linked lists. At level 0, each
node has pointers to its successor and predecessor nodes. At
level i (i > 0), each node u has pointers to the closest nodes
in both directions, in which the first i digits (prefix) of MV
are equal to u’s one. These doubly linked lists are actively
updated on node insertions and deletions.

2.4 Discussion

2.4.1 Number of Lookup Hops

In Chord#, when its routing tables are converged, the max-
imum number of hops is dlog2 ne. However, when routing
tables are not converged, the number of lookup hops may
be much larger than this bound. When a lot of nodes are
inserted between two adjacent nodes in a short time (churn
situation), the number of hops may be increased to O(x),
where x denotes the number of newly inserted nodes, be-
cause the finger tables of newly inserted nodes are not so
quickly updated.

The average number of lookup hops of Skip Graph is
O(log n) even in a churn situation, but in general, it is larger
than log2 n and the maximum number of hops is severalfold
higher than log2 n due to the randomness used for construct-
ing routing tables. There are several proposals to improve
lookup hops that refine the structure of a Skip Graph in-
stance using a self-stabilizing approach [8], [9]. However,
these proposals take time to reduce the number of hops to
the level comparable to Chord# and also incurs complexity.

The lookup performance of Mercury depends on the
accuracy of the estimated density of keys [6] and does not
excel converged results of Chord# in general.

2.4.2 Routing to Deleted Nodes

In Mercury and Chord#, because their routing tables are
asymmetric (a network is symmetric if, for any node p, all
nodes pointed to by any routing table entries of p have a
pointer to p), a leaving node cannot notify nodes whose
routing table entry points to the deleting node of its leaving.
Thus, in these networks, messages may be routed to an in-
valid node even if there is no failure. In this case, the query

ABE and TERANISHI: SUZAKU: A CHURN RESILIENT AND LOOKUP-EFFICIENT KEY-ORDER PRESERVING STRUCTURED OVERLAY NETWORK
1887

takes a longer time to complete because it requires retrans-
mission after waiting for a timeout. On the other hand, Skip
Graph is free from such cases because its routing table is
symmetric.

2.4.3 Implementation Complexity

An instance of Skip Graph consists of multiple levels of
doubly linked lists. Keeping the consistency between the
multiple levels of doubly linked lists is a complicated task
in a distributed environment where node insertion, dele-
tion, and failure occur unpredictably and concurrently. As
far as the authors know, no existing Skip Graph implemen-
tation supports failure recovery at a practical level. Skip
Graph variants such as Rainbow Skip Graph [10], Skip Tree
Graph [11], and p-Skip Graph [12] have similar implemen-
tation complexity issues. On the other hand, the structure of
Chord# is simple; pointers are unidirectional and just stored
in finger tables. Thus, the implementation complexity of
Chord# is smaller than that of Skip Graph. While Mercury
also uses unidirectional pointers, it requires an additional
random sampling process to estimate the density of keys,
which leads to a larger complexity for its implementations.

3. Suzaku

In this section, we describe the design and algorithms of
Suzaku.

3.1 Design Principles

The design principles of Suzaku are as follows:

• Use finger tables: Suzaku uses finger tables like
Chord# as its routing table.

• Introduce backward finger table: Suzaku has finger
tables for both directions. The conventional, clock-
wise direction finger table is called forward finger table
(FFT), and the new, counterclockwise direction one is
called backward finger table (BFT).

• Introduce passive updates: In Suzaku, like Chord#,
each node p updates an FTE by sending a request mes-
sage, which we call a getEnt message, to another node
q. This type of updates is called active update. In addi-
tion, q also updates its opposite direction finger table.
This type of updates is called passive update.

• Actively update finger tables immediately after node
insertion: In Chord#, when a node is inserted, its fin-
ger table is empty (except in level 0). In Suzaku, an
inserted node actively updates all its FFT and BFT en-
tries immediately after being inserted at the level 0
ring. In conjunction with passive updates, this policy
reduces performance degradation in the case where a
lot of nodes are inserted in a short time.

• Adopt active ring management algorithm: To cor-
rectly update FFT and BFT entries, successor and pre-
decessor pointers should point to the correct nodes. To

manage these pointers, Chord# adopts Chord [4]’s sta-
bilization algorithm. However it requires a long time
to converge when many nodes are inserted in a short
time [13]. Suzaku adopts a ring management algorithm
that actively updates successor and predecessor point-
ers upon node insertion and deletion (such as DDLL
[13]).

• Delayed finger table updates: In Chord#, when up-
dating an FTE, a node fetches a pointer from a remote
node and updates the FTE immediately without check-
ing whether the referenced node is alive or not. In
Suzaku, the updating of an FTE is delayed until the
referenced node is confirmed to be alive. This policy
reduces the possibility of routing a message to invalid
nodes.

• Introduce reverse pointers: In Suzaku, to avoid rout-
ing messages to already-deleted nodes, each node p has
a reverse pointer set (p.R), whose element points to a
node that has a pointer to p in its finger table at level 1 or
above. When node p is deleted, deletion notifications
are sent to each node in p.R. A deletion notification
contains an alternative node (p’s predecessor) and the
recipient node replaces its FTEs that points to p with
the alternative one.

We denote node p’s FFT and BFT as p.FFT and p.BFT,
respectively. p.FFT[0] and p.BFT[0] are respectively equal
to the successor and predecessor pointers that are managed
by the ring management algorithm.

3.2 Node Insertion

When node p is being inserted, it asks an introducer node to
find its adjacent key nodes in the overlay network and inserts
p into the level 0 ring using the ring management algorithm.
Then, FFT and BFT entries of level 1 and above are actively
updated in turn; p updates p.FFT[1], p.BFT[1], p.FFT[2],
p.BFT[2] . . . in this order. This initial finger table update
continues until the fetched pointer reaches or passes p. (See
also the message sequence diagram (Fig. 2) and the pseudo
code (Fig. 3).)

The following is the procedure to update p.FFT[i + 1]
(i ≥ 0). Updating p’s BFT is similar; substitute FFT for
BFT and vice versa.

• Let q denote the node pointed to by p.FFT[i]. p sends a
getEnt request to node q. Let x denote the node pointed
to by q.FFT[i] (Fig. 1 left).

• When q receives the getEnt request, q sends back
q.FFT[i] to p. Also p updates q.BFT[i] to p except
in the case of i = 0 (because the successor and prede-
cessor pointers are managed by the ring management
algorithm). This update is called Passive Update 1
(PU1).

• At this point, it is uncertain from the perspective of p
whether x is alive or not. This is determined later when
p fetches x.FFT[i + 1] from x and receives a response
message from x. Thus, p delays updating p.FFT[i + 1]

1888
IEICE TRANS. COMMUN., VOL.E102–B, NO.9 SEPTEMBER 2019

Fig. 1 Explanatory figures of FFT andBFTupdates. p updates p.FFT[i+
1] (left) and p.BFT[i + 1] (right). p sends a getEnt request to q to fetch the
pointer to x.

Fig. 2 Message sequence diagram of initial finger table updates. Node
N0 is inserted into a network that consists of nodes N1 to N7 whose finger
tables have been converged. Slanted lines show message transmission and
horizontal dashed lines show finger table updates (thin ones are active and
bold ones are passive). RemoveRev messages are omitted for simplicity.

until that point.

Let us consider the casewhere p fetches q.BFT[i]where
q is the node pointed to by p.BFT[i] (Fig. 1 right). In this
case, q.FFT[i] is updated to p by PU1. Also, because the
node pointed to by p.FFT[i] (node s in the figure) is the
2i+1 clockwise distant node from q (when finger tables are
converged) and has been confirmed to be alive, q.FFT[i+1] is
updated to p.FFT[i]. This update is called Passive Update 2
(PU2).

PU2 is not used when p updates its FFT. This is be-
cause when p updates p.FFT[i], p.BFT[i] is not yet updated
because of delayed finger table updates (the node pointed to
by the previously fetched entry for p.BFT[i] is not confirmed
to be alive). Also, PU2 is not used if s is located between
q and p. Such cases occur when q is farther than 1/2 in the
ring from p.

Figure 2 is an example of a message sequence. A getEnt
request message has four parameters. The first two indicate
which entry to fetch. The third one is the locator of the
request sender node and used for PU1. The last one is the
same level pointer of the opposite side finger table of the
sender node (i.e., BFT[i] (resp., FFT[i]) if the getEnt request

1 c o n s t FFT = 0 , BFT = 1 ;
2 / / f t [FFT] i s FFT , f t [BFT] i s BFT
3 / / f t [FFT] [0] = s u c c e s s o r , f t [BFT] [0] = p r e d e c e s s o r
4 var f t [2] [] : Array o f {Array o f NodeAndKey } ;
5 / / NodeAndKey i s a t yp e t h a t c o n t a i n s t h e l o c a t o r and
6 / / t h e key of a node
7 var R: Se t o f NodeAndKey ; / / r e v e r s e p o i n t e r s e t
8 n . i n i t i a l U p d a t e (d i r , i , n1 , n2) {
9 t a b ← f t [d i r] ;
10 i f (i = 0) n1 ← f t [d i r] [0] ; / / succ o r p red
11 i f (n1 = n u l l o r n1 = n) {
12 x ← n u l l ; go to nex t ;
13 }
14 / / y i s used by n1 f o r PU2 .
15 i f (d i r = FFT and n2 < (n , n1))
16 y ← n2 ;
17 e l s e (d i r = BFT and f t [FFT] [i] < (n1 , n))
18 y ← f t [FFT] [i] ;
19 e l s e y ← n u l l ;
20 x ← n1 . g e tEn t (d i r , i , n , y) ;
21 i f (n1 f a i l e d) { we omit the detail of this case }
22 i f (i , 0) {
23 / / a c t i v e and de l ay ed upda t e
24 change (tab , i , n1 , t rue) ;
25 }
26 i f ((d i r = FFT and x ∈ [n , t a b [i]]) o r
27 (d i r = BFT and x ∈ [t a b [i] , n]))
28 x ← n u l l ; / / c i r c u l a t e d
29 nex t :
30 i f (x = n u l l and n2 = n u l l) re turn ;
31 i f (d i r = FFT) { n . i n i t i a l U p d a t e (BFT , i , n2 , x) ; }
32 e l s e { n . i n i t i a l U p d a t e (FFT , i + 1 , n2 , x) ; }
33 }
34 n . g e tEn t (d i r , l e v e l , p , q) {
35 i f (l e v e l , 0) {
36 change (f t [1 − d i r] , l e v e l , p , t rue) ; / / PU1
37 }
38 i f (q , n u l l) {
39 i f (d i r = BFT) {
40 change (f t [1 − d i r] , l e v e l +1 , q , f a l s e) ; / / PU2
41 } e l s e R ← R ∪ {q } ;
42 }
43 re turn f t [d i r] [l e v e l] ;
44 }
45 n . change (tab , l e v e l , new , a dd t o r e v) {
46 o ld ← t a b [l e v e l] ;
47 t a b [l e v e l] ← new ;
48 i f (a d d t o r e v and new , n u l l) R ← R ∪ {new } ;
49 i f (o l d , n u l l and (FFT and BFT do not contain old)) {
50 o ld . removeRev (n) ;
51 }
52 }
53 n . removeRev (p) {
54 R ← R \ {p } ;
55 }

Fig. 3 The initial finger table update algorithm.

is to fetch an FFT[i] (resp., BFT[i])). This pointer is used
either for PU2 or for adding to a reverse pointer set.

In the figure, N0 receives a pointer to N2 from N1 but it
is stored in N0.FFT[1] after receiving a reply message from
N2 (delayed finger table updates). N6 updates N6.FFT[1]
to N0 by PU1 and N6.FFT[2] to N2 by PU2. Note that N1
(resp., N7) does not update its BFT[0] (resp. FFT[0]) on
receiving a getEnt request because level 0 is managed by the
ring maintenance algorithm.

The algorithm of initial finger table updates is shown
in Fig. 3 (Note that this figure contains algorithms de-
scribed later in Sect. 3.4). When the ring manage-
ment algorithm completes insertion into the level 0 ring,
initialUpdate(FFT, 0, null, null) is executed to
start the initial finger table update procedure.

3.3 Periodic Finger Table Updates

After node p finishes initial finger table updates, p period-
ically updates the finger tables (periodic update mode). In
this mode, p updates p.FFT[i] every Tf t , increasing i from
1. When i reaches the max level, i is reset to 1. While PU1
is still used in this mode (i.e., a node that receives a getEnt

ABE and TERANISHI: SUZAKU: A CHURN RESILIENT AND LOOKUP-EFFICIENT KEY-ORDER PRESERVING STRUCTURED OVERLAY NETWORK
1889

Fig. 4 Message sequence diagramof periodic finger table updates of node
N0.

1 / / i : l e v e l t o f e t c h
2 / / n1 : p r e v i o u s l y f e t c h e d e n t r y f o r n . FFT [i]
3 n . p e r i o d i cUpd a t e (i , n1) {
4 i f (i = 0) n1 ← f t [FFT] [0] ; / / s u c c e s s o r
5 e l s e i f (f t [FFT] [i] i s upda t ed w i t h i n p a s t Tft)
6 / / i f f t [FFT] [i] i s p a s s i v e l y upda t ed a f t e r f e t c h i n g n1 ,
7 / / use f t [FFT] [i] i n s t e a d o f n1 because i t i s newer .
8 n1 ← f t [FFT] [i] ;
9 x ← n1 . g e tEn t (FFT , i , n , n u l l) ;
10 i f (n1 f a i l e d) { we omit the detail of this case }
11 i f (i , 0) {
12 / / a c t i v e and de l ay ed upda t e
13 change (f t [FFT] , i , n1 , t rue) ;
14 }
15 i f (x ∈ [n , f t [FFT] [i]]) { / / c i r c u l a t e d
16 / / t r u n c a t e FFT and BFT t o s i z e i
17 f o r (j← i to f t [FFT] . l e ng t h −1)
18 change (f t [FFT] , i , n u l l , f a l s e) ;
19 f o r (j← i to f t [BFT] . l e ng t h −1)
20 change (f t [BFT] , i , n u l l , f a l s e) ;
21 s l e e p (Tft) ;
22 n . p e r i o d i cUpd a t e (0 , n u l l) ;
23 } e l s e {
24 / / f e t c h e d e n t r y (x) i s s t o r e d l a t e r (d e l a y ed upda t e)
25 s l e e p (Tft) ;
26 n . p e r i o d i cUpd a t e (i + 1 , x) ;
27 }
28 }

Fig. 5 The periodic finger table update algorithm.

request updates its BFT), PU2 is not used.
Figure 4 is an example of a message sequence. The al-

gorithm is shown in Fig. 5. When initial finger table updates
are completed, periodicUpdate(0, null) is executed af-
ter waiting Tf t to start periodic finger table updates.

This algorithm is essentially the same to that of Chord#

with regard to FFT, so when no node insertion and deletion
occurs, an FFT[i] of any node converges so that it points
to the 2i distant node in the clockwise direction. Likewise,
a BFT[i] of any node converges so that it points to the 2i
distant node in the counterclockwise direction because PU1
ensures that when p.FFT[i] points to q, q.BFT[i] points to
p.

3.4 Managing Reverse Pointers

When node p actively updates its finger table and obtains a
pointer to q, q also obtains p in its finger table using PU1.
Therefore, pointers obtained using active update and PU1
are added to the reverse pointer set.

As for PU2, a node s, which is pointed to by p.FFT[i],
is pointed to by q.FFT[i + 1], where q is a node pointed to
by p.BFT[i]. Therefore, q is added to s’s reverse pointer set.
This is done as follows: before p sends a getEnt request to q,
p sends another getEnt request to s (to obtain r .FFT[i]). This
request sent to s is used for adding q to s’s reverse pointer
set (cf. “R = R ∪ {N0, N6}” at N2 in Fig. 2, where s = N2
and q = N6).

When an FTE of p is actively or passively updated from
x to y and if p has no more FTEs that points to x, p sends a
removeRev request to x to remove p from x.R.

3.5 GetEnt Received by Inserting Node

Let us consider the case where a node p sends a getEnt
request to another node q to fetch q.FFT[i] (same discussion
can be applied to BFT). If q has not finished its initial finger
table updates, q.FFT[i] may be not initialized (null). In this
case, p resends the getEnt request after a defined amount of
time. (This procedure is omitted in Figs. 3 and 5.)

Note that this scheme is not susceptible to livelock. As
the level 0 ring is managed by a ring management algorithm,
a getEnt request to fetch FFT[0] always succeeds and thus
FFT[1] of any node is eventually initialized. This in turn en-
ables FFT[2] and subsequent FFTs of any node to eventually
be initialized.

3.6 Node Deletion

When node p is being deleted, the ring management algo-
rithm first removes p from the level 0 ring. Then, FTEs of
other nodes that point to p are changed to p’s predecessor q.
This is done as follows: p sends p’s reverse pointer set (p.R)
to q. q sends a deletion notification message to each node
in p.R, which requests the recipient node to change all the
FTEs that points to p to q. Also, q merges p.R into q.R. As
p may receive messages for a while after p is removed from
the level 0 ring, p continues its routing task for a while after
its deletion.

3.7 Lookup

Suzaku uses greedy routing in the clockwise direction to
look up a target node. When node p looks up a node whose
key is equal to the given k, p sends a query message to x,
which is a node in p’s finger table whose key is closest to
k in the clockwise direction. This procedure is repeated by
query recipient nodes until the query reaches the destination
node.

As each node has finger tables for both directions, the
upper bound of lookup hops is dlog2 ne−1when finger tables
of all nodes are converged†. Considering unconverged states,
the number of lookup hops peaks when a lot of nodes are

†Each FFT and BFT covers half of the node space and the
fingers in the tables point to exponentially distant nodes. Thus, the
upper bound of lookup hops is dlog2(n/2)e = dlog2 ne − 1.

1890
IEICE TRANS. COMMUN., VOL.E102–B, NO.9 SEPTEMBER 2019

inserted in a short time and the newly inserted nodes have
yet to start periodical finger table updates (PFTUs). The
lookup performance in such situations are evaluated with
simulations in Sects. 4.2 and 4.3.

3.8 Handling Failures

When a node fails, both the level 0 ring and finger tables need
be repaired. The former is handled by the ring management
algorithm. We describe how to address the latter.

In Suzaku, an FTE that points to node x also contains
x’s successor list as its backup pointers. Backup pointers
are directly obtained from x by finger table updates (with the
reply messages of getEnt). When node p sends a message to
node q, which is taken from an FTE e, and detects q’s failure
(by response timeout, etc.), p picks up an alternative node q′

from the backup pointers of e and resend the message to q′.
(q′ provides its successor list to p to refill backup pointers.)

4. Evaluation and Discussion

In this section, we evaluate Suzaku by comparing it with
Chord# and Skip Graph (We choose Chord# as a comparison
target among periodic KOPSONs, because Suzaku is based
on Chord# and thus its comparison is essentially important).

4.1 Simulator

We implemented a discrete, message level event simulator
that simulates Suzaku, Chord#, and Skip Graph. All algo-
rithms use DDLL [13] as the ring management algorithm.

In the simulations, Tf t , the finger table update period of
Chord# and Suzaku, is 1 minute. All end-to-end latency is
set as 20ms regardless of message size†.

In the Chord# implementation, we applied the following
improvements for performance. On node insertion, a node
copies the finger tables of the predecessor node. On node
failure, finger tables are recovered using the same algorithm
of Suzaku.

In the Skip Graph implementation, binary MV is used.
The implementation has several differences from the origi-
nal paper [7]. (1) In the original version, linked lists at each
level are not circular, but ours are circular for fair compari-
son. (2) To simplify the evaluation, insertion to or deletion
from linked lists at level 1 or above is instantly completed
and does not conflict with the insertion or deletion of other
nodes. (3) To simplify the evaluation, routing tables are in-
stantly repaired when a failure is detected. Note that these
modifications are advantageous for Skip Graph.

All experiments started after the first node (initial node)
was inserted. All other nodes are inserted in random order.

†End-to-end latency is small compared with Tf t and does not
affect much on the simulation results. 20ms (40ms in RTT) is
typical value used in several Internet research (such as [14], [15]).
Also, all messages used in the experiments are control messages so
their sizes do not vary much.

Fig. 6 Average number of lookup hops for elapsed time. Number of
nodes is 64.

Fig. 7 (a) and (b): Probability distribution of number of lookup hops at
initial state (a) and at converged state (b). (c): Comparison between the
initial state and the converged state of Suzaku.

4.2 Number of Hops in Massive Node Insertion (1)

For Suzaku, the worst situation for lookup performance is
when a lot of nodes are inserted in a short time and no
node has started periodic finger table updates. Thus, we
evaluated the following case. We inserted 64 nodes in a short
time. After insertion finished, we executed 4000 lookups
between two random nodes every 60 seconds. We repeated
this experiment 10 times and merged the results.

Figure 6 shows the average number of lookup hops
from time 0 (when all nodes were inserted) to time 10 (min).
Figures 7(a) and 7(b) show the probability distributions of
the number of lookup hops at time 0 (initial state) and time 64
(when the routing tables of all Chord# or Suzaku nodes were
converged). Figure 7(c) shows the difference between hops
distribution of Suzaku at time 0 and time 64.

In Chord#, the number of lookup hops at time 0 is large
and the average number of hops is O(n) because no node
has updated its finger table. The lookup performance of
Skip Graph does not change because it does not update its
routing tables. In Suzaku, the number of lookup hops is
small (average 2.95) from the time of insertion, and it is

ABE and TERANISHI: SUZAKU: A CHURN RESILIENT AND LOOKUP-EFFICIENT KEY-ORDER PRESERVING STRUCTURED OVERLAY NETWORK
1891

close to the converged value (2.50). According to Fig. 7(a),
the lookup performance of Suzaku seems to exceeds Skip
Graph and Chord# even without any PFTUs. This is true
for Chord# but for Skip Graph, it depends on the number of
nodes. We discuss this in the next subsection.

When finger tables are converged (Fig. 7(b)), the maxi-
mum number of hops of Suzaku is settled to dlog2 ne − 1 (5
in this case). Figure 7(c) indicates that the number of lookup
hops at the initial state is very close to the converged one.

4.3 Number of Hops in Massive Node Insertion (2)

To examine the churn resiliency of Suzaku in more detail, we
evaluated the lookup performance, by varying the number of
nodes. As we were interested in the worst case performance,
PFTUs were turned off in this experiment.

We also measured how PU2 contributed to lookup per-
formance. We compared original Suzaku (Suzaku)with Skip
Graph, Suzaku without PU2 (Suzaku-nopu2), and Suzaku
with bi-directional PU2 (Suzaku-pu2bid). Suzaku-pu2bid
updates both FFT and BFT with PU2 whereas the normal
PU2 updates only FFT (uni-directional)†. We omit Chord#

because it requires O(n) hops when PFTU is turned off.
The results shown in Fig. 8 are the average of 10 trials.

Among Suzaku and its variants, Suzaku-pu2bid achieved the
best performance, followed by normal Suzaku and Suzaku-
nopu2. The average numbers of lookup hops of Suzaku-
pu2bid, Suzaku, andSuzaku-nopu2 at n = 32 Kiwere around
10.2, 11.2 and 12.7, respectively.

While the trend line of SkipGraph is straight because its
average number of lookup hops is O(log n) [7], the lines of
Suzaku and its variants slightly curve upwards. This implies
that the average number of lookup hops of Suzaku and its
variants (without PFTU) are larger than O(log n). However,
if the number of nodes is fewer than around 100k, which is
sufficient for many practical cases, Suzaku achieves nearly
logarithmic lookup hops and is faster than Skip Graph, even
if PFTU is turned off.

These results conclude that Suzaku is highly resilient
against massive node insertion.

Next, we discuss the rationale for the number of lookup
hops in this situation.

Figure 9 shows the average clockwise distance (in num-
ber of nodes) of FFT entries for each level when PFTU is
turned off. (When computing the average in a network of n
nodes, a node that lacks FFT[i] is treated as if it has a pointer
of distance n.)

As successor pointers of each node are actively main-
tained by the ring maintenance algorithm, the distance of all
pointers in FFT[0] is 1 (not shown in the figure). The dis-
tance of all pointers in FFT[1] is 2. This can be explained as
follows. Let us assume node p is inserted, p.FFT[0] points
to node q, and p.FFT[1] points to node r . At this point, the
†Suzaku-pu2bid requires an additionalmessage to update aBFT

entry of a remote node. For example, in Fig. 3, N0 sends a BFT-
update request to N1 to update N1.BFT[1] to N7 after receiving a
reply message from N7 (which confirms that N7 is alive).

Fig. 8 Distribution of number of lookup hops for various numbers of
nodes when periodical finger table updates are turned off. Suzaku, Suzaku
without PU2, Suzaku with bi-directional PU2, and Skip Graph were eval-
uated. Boxes with whiskers represents the distribution of the number of
hops. The bottom and upper edges of a box represent the 25th and 75th per-
centiles, respectively. The bottom and upper ends of the whiskers represent
the 10th and 90th percentiles, respectively. The band inside a box is the
average. The average points are connected with lines to observe the trend
line.

Fig. 9 Average distance (in number of nodes) of FFT entries for each
level when periodic finger table updates are turned off. Both axes are in a
log scale. Levels over L7 are omitted. When n = 128, no node has a L7
entry.

distance from p to r is 2. If the distance of p.FFT[1] changes
later, another node x must be inserted between p and r . If
x is inserted between q and r , x updates p.FFT[1] to x with
PU1. If x is inserted between p and q, x updates p.FFT[1]
to q with PU2. In either case, the distance of p.FFT[1] does
not change. (Note that we excluded node deletion cases in
this discussion. If a node deletion occurs, the distance of
FFT[1] may drop to 1).

Above level 1, the average distance of each level gradu-
ally increases as the number of nodes increases, but it seems
to converge to a certain distance; at n = 128 Ki, the ap-
proximate average distances of FFT[2] to FFT[7] are 6.37,
22.3, 90.0, 406.2, 2004.0, and 9306.0, respectively. The
distance intervals between adjacent levels increase slightly
larger than exponential. This observation agrees with the
fact that the average lookup hops of Suzaku without PFTU
is nearly logarithmic but larger than O(log n).

On the basis of the above results, the necessity of PFTU
is questioned. There are several reasons to use PFTU aside
from optimizing lookup hops.

1892
IEICE TRANS. COMMUN., VOL.E102–B, NO.9 SEPTEMBER 2019

Fig. 10 Distributions of distances of FFT entries for each level. The
x-axis is distance (in number of nodes) of FFT entries. The y-axis is the
FFT level. Each dot corresponds to a single FFT entry. (a) Distributions
immediately after 400 nodes are inserted. (b), (c), and (d) distributions after
7, 15, and 23 minutes, respectively, to observe convergence.

• As described in Sect. 3.8, an FTE has backup pointers.
PFTU is useful for keeping backup pointers up-to-date.

• Let us consider the case where successive nodes
N1, N2, . . . , N10 are deleted. In this case, N0 is more
pointed to by other nodes because the node deletion
algorithm updates all the FTEs of nodes that point to
N1 . . . N10 to N0. (The node deletion algorithm up-
dates all pointers to a deleted node to its predecessor
node). PFTU effectively eliminates such imbalance.

4.4 Distribution and Convergence of FFT Entries

We inserted 400 nodes in a short time and observed the dis-
tance changes of FFT entries (Fig. 10). We observed that the
variance of distribution is initially large especially at higher
levels (Fig. 10(a)). (b), (c), and (d) respectively correspond
to the result after the periodicUpdate procedure is exe-
cuted 7, 15, and 23 times at each node. The distance of
FFT[i] converges to 2i as time elapses.

4.5 Retransmission Rate in Massive Node Deletion

To examine the behavior when a lot of nodes are deleted in
a short time, we conducted the following experiment. We
inserted 256 nodes (N0 to N255) and deleted N32 to N96
immediately after finger tables were converged. In parallel to
deletion, we performed queries from a random node within
N0 to N31 to a random node within N97 to N127. We
measured the retransmission ratio, which is a ratio of how
many queries were sent to a deleted node, and retransmission

Fig. 11 Lookup retransmission ratio in massive node deletion. The x-
axis represents elapsed time since node deletion was completed. Ratio is
computed by aggregating lookup failure over 10-second periods.

Fig. 12 Relation between distance to destination node and number of
lookup hops. The x-axis represents the number of nodes from N64 to the
destination node (N0 to N127).

was performed.
Figure 11 shows the results. While Chord# required fre-

quent retransmissions (because it does not remove pointers
to a deleted node), Suzaku and Skip Graph did not require
any retransmissions. These results show that Suzaku (and
Skip Graph) are resilient to massive node deletion.

4.6 Relation Between Location of Lookup Target and
Number of Lookup Hops

Some KOPSON applications such as pub/sub systems re-
quire that routing to close nodes is fast regardless of its
directions (bigger or smaller keys). Suzaku conforms to this
property. To examine the performance of looking up close
nodes, we inserted 127 nodes (N0 to N63 and N65 to N127)
and then inserted N64. We measured the number of hops
from N64 to all other nodes. Results are shown in Fig. 12.

We observed that immediately after a massive node in-
sertion, Chord# requires a significant amount of time to look
up close nodes in the counterclockwise direction (requires
O(n) hops), and Suzaku is fast regardless of lookup direc-
tions without finger table updates.

4.7 Height of Finger Tables

We evaluated the average height of finger tables of Suzaku,
both in the state of after massive node insertion (where PFTU
is off) and in the converged state (Fig. 13). The average
height is, dlog2 ne in the converged state, and is lower than
dlog2 ne in the massive node insertion case. This result
indicates that the average finger table height of Suzaku is
O(log n).

4.8 Node Insertion Traffic

To measure traffic required for node insertion, we conducted
the following experiment. After inserting the initial node,

ABE and TERANISHI: SUZAKU: A CHURN RESILIENT AND LOOKUP-EFFICIENT KEY-ORDER PRESERVING STRUCTURED OVERLAY NETWORK
1893

Fig. 13 Finger table height of Suzaku, both in the state of after massive
node insertion (no PFTU) and in the converged state. The y-axis is the
average of max(FFT height, BFT height).

Fig. 14 Number of messages required for node insertion as a function of
insertion order.

we inserted 100 nodes and counted the number of messages
required for inserting the i’th node. We repeated the experi-
ment 10 times to compute the average number.

Results are shown in Fig. 14. According to the graph,
Suzaku requires fewermessages than SkipGraph. AsChord#

does not construct finger tables on node insertion, it requires
less messages than Skip Graph and Suzaku. The number
of messages of Chord# increases as i increases because it
required more messages for finding node insertion locations.
If nodes are slowly inserted, fewer messages are required as
their finger tables will be (at least partially) updated.

Node insertion requires three types of messages; mes-
sages for finding insertion location (m1), those for inserting
to the level 0 ring (m2) and those for constructing routing
tables (m3). As many nodes are inserted in a short time in
this experiment, m1 is O(n) for Chord#, O(log n) for Skip
Graph, and a nearly logarithmic number against n for Suzaku
(n denotes the number of nodes). m2 is 3 in DDLL. m3 is 2
for Chord# (for copying a finger table from the predecessor
node) and O(log n) for both Suzaku and Skip Graph because
it is in proportion to the height of the routing tables. In
Suzaku, updating a single level of finger tables requires 7
messages at the most (2 for getEnt, 2 for replies, 3 for re-
moveRev). Skip Graph requires 6 messages (2 on average
for reaching the MV-matching node, 1 for the reply, and 3
for inserting to the linked list, assuming DDLL is used).

In summary, node insertion in Suzaku requires a nearly
logarithmic number of messages even in the worst case.

4.9 Node Deletion Traffic

Node deletion requires deletion from the level 0 ring and
sending deletion notificationmessages to each node in the re-
verse pointer set. The former requires 3 messages in DDLL.
The latter depends on the size of reverse pointer set. The
size is usually bounded by the sum of the height of FFT and
BFT. It is temporarily increased by O(log n) when the suc-
cessor node is deleted (see Sect. 3.6), but as time elapses, the

Table 1 Comparison matrix.
Skip
Graph Chord# Suzaku

Avg. # of lookup
hops (after massive in-
sertion)

O(log n) O(n)

larger than
O(log n) but

nearly
logarithmically
increased and

smaller than Skip
Graph when n ≤
around 100k

Avg. # of lookup hops
(converged) O(log n) ≤

dlog2 ne
≤ dlog2 ne − 1

Max. # of lookup hops
(converged)

severalfold
of log2 n

dlog2 ne dlog2 ne − 1

Lookup close nodes
in the counterclockwise
direction

fast slow fast

Routing to deleted nodes no yes no
Implementation
complexity complex simple simple

size is restored. Therefore, we can say that Suzaku requires
O(log n) messages for node deletion.

4.10 Permanent Traffic

Both Chord# and Suzaku update their finger tables periodi-
cally (everyTf t). Chord# requires 2 messages (getEnt and its
reply) for single entry updates but Suzaku may require one
additional message (removeRev) when an entry is modified.

However, while Chord# requires short Tf t to reduce the
number of hops in the case of massive node insertion, it is
not necessary for Suzaku (see Sect. 4.3). Therefore, Suzaku
requires less frequent finger table updates than Chord#. As
for Skip Graph, while it does not require periodical routing
table updates, it still requires the sending of periodical keep-
alive messages to neighbor nodes of each level to maintain
connectivity with other nodes. Quantitative comparison of
permanent traffic is the focus of future studies.

The literature of Chord#[6] proposes an idea of pig-
gybacking FTE information when sending search results to
improve routing table quality. This technique can also be
applied to Suzaku.

4.11 Implementation Complexity

In comparison with Chord#, Suzaku includes the algorithms
of initial finger table updates, passive updates, and reverse
pointers. As these algorithms are not complex, the imple-
mentation complexity of Suzaku is not much different from
Chord#. Suzaku is less complex than Skip Graph because
it does not need to manage the consistency among multiple
distributed doubly linked lists.

4.12 Comparison

Table 1 shows the comparison matrix among Chord#, Skip
Graph, and Suzaku.

1894
IEICE TRANS. COMMUN., VOL.E102–B, NO.9 SEPTEMBER 2019

5. Conclusion

We presented Suzaku, a novel KOPSON that combines the
strengths of Chord# (fast lookup when routing tables are
converged and low implementation complexity) and those
of Skip Graphs (no performance degradation in churn and
fast lookup of close nodes in both directions). Suzaku is
highly scalable; as the number of nodes increases, both the
number of lookup hops and the number of messages required
for node insertion/deletion increase nearly logarithmically at
most even in the worst case (where all nodes are inserted in
a short time) for practical number of nodes, and it requires
less frequent finger table updates. Although not described in
this paper, like Chord# and Skip Graph, Suzaku efficiently
supports range queries. Given these properties and features,
Suzaku is useful for various applications.

We have implemented Suzaku in our P2P network plat-
form PIAX [16] and replaced Skip Graph with Suzaku as its
main overlay network.

Our future work includes conducting more detailed
evaluations and computing the theoretical bound of the max-
imum number of lookup hops.

Acknowledgments

This work was in part supported by JSPS KAKENHI Grant
Number JP16K00135.

References

[1] A. Yahyavi and B. Kemme, “Peer-to-peer architectures for massively
multiplayer online games: A survey,” ACM Comput. Surv., vol.46,
no.9, pp.1–51, 2013.

[2] R. Banno, S. Takeuchi, M. Takemoto, T. Kawano, T. Kambayashi,
and M. Matsuo, “Designing overlay networks for handling exhaust
data in a distributed topic-based pub/sub architecture,” J. Information
Processing, vol.23, no.2, pp.105–116, 2015.

[3] X. Shao, M. Jibiki, Y. Teranishi, and N. Nishinaga, “Effective load
balancing mechanism for heterogeneous range queriable cloud stor-
age,” Proc. CloudCom 2015, pp.1–8, 2015.

[4] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer
lookup protocol for internet applications,” IEEE/ACM Trans. Netw.,
vol.11, no.1, pp.17–32, 2003.

[5] A.R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Support-
ing scalable multi-attribute range queries,” Proc. SIGCOMM 2004,
pp.353–366, ACM, 2004.

[6] T. Schütt, F. Schintke, andA. Reinefeld, “Range queries on structured
overlay networks,” Comput. Commun., vol.31, no.2, pp.280–291,
2008.

[7] J. Aspnes and G. Shah, “Skip graphs,” ACM Trans. Algorithms,
vol.3, no.4, pp.1–25, 2007.

[8] T. Kawaguchi, R. Banno, M. Hojo, and K. Shudo, “Self-refining skip
graph: A structured overlay approaching to ideal skip graph,” Proc.
COMPSAC 2016, pp.377–378, 2016.

[9] M. Hojo, R. Banno, and K. Shudo, “FRT-skip graph: A skip graph-
style structured overlay based on flexible routing tables,” Proc. IEEE
Intl. Symposium on Computers and Communication 2016, pp.657–
662, IEEE, 2016.

[10] M.T. Goodrich, M.J. Nelson, and J.Z. Sun, “The rainbow skip graph:
A fault-tolerant constant-degree distributed data structure,” Proc.

17th annual ACM-SIAM symposium onDiscrete algorithm, pp.384–
393, 2006.

[11] A. González-Beltrán, P. Milligan, and P. Sage, “Range queries over
skip tree graphs,” Comput. Commun., vol.31, no.2, pp.358–374,
2008.

[12] A. Singh and S. Batra, “P-skip graph: An efficient data structure for
peer-to-peer network,” in Intelligent Distributed Computing, pp.43–
54, Springer, 2015.

[13] K. Abe and M. Yoshida, “Constructing distributed doubly linked
lists without distributed locking,” Proc. IEEE Intl. Conf. on P2P
Computing 2015, pp.1–10, 2015.

[14] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker, “Recursively
cautious congestion control,” Proc. 11th USENIX Conference on
Networked Systems Design and Implementation, NSDI’14, pp.373–
385, Berkeley, CA, USA, USENIX Association, 2014.

[15] N. Cardwell, Y. Cheng, C.S. Gunn, S.H. Yeganeh, and V. Jacob-
son, “BBR: Congestion-based congestion control,” Commun. ACM,
vol.60, no.2, pp.58–66, 2017.

[16] Y. Teranishi, “PIAX: Toward a framework for sensor overlay net-
work,” Proc. CCNC’09, pp.1–5, 2009.

Kota Abe received his M.E. and Ph.D. de-
grees from Osaka University, Japan, in 1994
and 2000, respectively. He was an engineer at
Nippon Telegraph and Telephone Corporation
(NTT), Japan, from 1994 to 1996. He was a
research associate at Media Center, Osaka City
University, Japan, from 1996 to 2000 and a lec-
turer from 2000 to 2003. He was a lecturer of
Graduate School for Creative Cities, Osaka City
University from 2003 to 2005, an associate pro-
fessor from 2005 to 2012, and a professor since

2012. Since 2018, he is a professor of Graduate School of Engineering,
Osaka City University. He received IPSJ Best Paper Award in 2013. His
research interests include distributed systems and system software. He is a
member of the IPSJ, IEICE and IEEE.

Yuuichi Teranishi received his M.E. and
Ph.D. degrees from Osaka University, Japan, in
1995 and 2004, respectively. From1995 to 2004,
he was engaged Nippon Telegraph and Tele-
phone Corporation (NTT). From 2005 to 2007,
he was a Lecturer of Cybermedia Center, Osaka
University. From 2007 to 2011, he was an asso-
ciate professor of Graduate School of Informa-
tion Science and Technology, Osaka University.
Since August 2011, He has been a research man-
ager and project manager of National Institute of

Information and Communications Technology (NICT). He received IPSJ
Best Paper Award in 2011. His research interests include technologies for
distributed network systems and applications. He is a member of the IPSJ,
IEICE and IEEE.

http://dx.doi.org/10.1145/2522968.2522977
http://dx.doi.org/10.1145/2522968.2522977
http://dx.doi.org/10.1145/2522968.2522977
http://dx.doi.org/10.2197/ipsjjip.23.105
http://dx.doi.org/10.2197/ipsjjip.23.105
http://dx.doi.org/10.2197/ipsjjip.23.105
http://dx.doi.org/10.2197/ipsjjip.23.105
http://dx.doi.org/10.1109/cloudcom.2015.55
http://dx.doi.org/10.1109/cloudcom.2015.55
http://dx.doi.org/10.1109/cloudcom.2015.55
http://dx.doi.org/10.1109/tnet.2002.808407
http://dx.doi.org/10.1109/tnet.2002.808407
http://dx.doi.org/10.1109/tnet.2002.808407
http://dx.doi.org/10.1109/tnet.2002.808407
http://dx.doi.org/10.1145/1030194.1015507
http://dx.doi.org/10.1145/1030194.1015507
http://dx.doi.org/10.1145/1030194.1015507
http://dx.doi.org/10.1016/j.comcom.2007.08.027
http://dx.doi.org/10.1016/j.comcom.2007.08.027
http://dx.doi.org/10.1016/j.comcom.2007.08.027
http://dx.doi.org/10.1145/1290672.1290674
http://dx.doi.org/10.1145/1290672.1290674
http://dx.doi.org/10.1109/compsac.2016.188
http://dx.doi.org/10.1109/compsac.2016.188
http://dx.doi.org/10.1109/compsac.2016.188
http://dx.doi.org/10.1109/iscc.2016.7543812
http://dx.doi.org/10.1109/iscc.2016.7543812
http://dx.doi.org/10.1109/iscc.2016.7543812
http://dx.doi.org/10.1109/iscc.2016.7543812
http://dx.doi.org/10.1145/1109557.1109601
http://dx.doi.org/10.1145/1109557.1109601
http://dx.doi.org/10.1145/1109557.1109601
http://dx.doi.org/10.1145/1109557.1109601
http://dx.doi.org/10.1016/j.comcom.2007.08.003
http://dx.doi.org/10.1016/j.comcom.2007.08.003
http://dx.doi.org/10.1016/j.comcom.2007.08.003
http://dx.doi.org/10.1007/978-3-319-11227-5_5
http://dx.doi.org/10.1007/978-3-319-11227-5_5
http://dx.doi.org/10.1007/978-3-319-11227-5_5
http://dx.doi.org/10.1109/p2p.2015.7328521
http://dx.doi.org/10.1109/p2p.2015.7328521
http://dx.doi.org/10.1109/p2p.2015.7328521
http://dx.doi.org/10.1145/3009824
http://dx.doi.org/10.1145/3009824
http://dx.doi.org/10.1145/3009824
http://dx.doi.org/10.1109/ccnc.2009.4784954
http://dx.doi.org/10.1109/ccnc.2009.4784954

