
Copyright IEEE 2015.
This manuscript is author’s personal copy of the article submitted to “2015 IEEE International Conference on Peer-to-Peer
Computing (P2P2015)”. Published version will be available on IEEE Xplore.

Constructing Distributed Doubly Linked Lists
without Distributed Locking

Kota Abe
Osaka City University, Osaka, Japan / NICT, Tokyo, Japan

Email: k-abe@media.osaka-cu.ac.jp

Mikio Yoshida†

BBR Inc., Osaka, Japan

Abstract—A distributed doubly linked list (or bidirec-
tional ring) is a fundamental distributed data structure
commonly used in structured peer-to-peer networks. This
paper presents DDLL, a novel decentralized algorithm
for constructing distributed doubly linked lists. In the
absence of failure, DDLL maintains consistency with
regard to lookups of nodes, even while multiple nodes are
simultaneously being inserted or deleted. Unlike existing
algorithms, DDLL adopts a novel strategy based on con-
flict detection and sequence numbers. A formal description
and correctness proofs are given. Simulation results show
that DDLL outperforms conventional algorithms in terms
of both time and number of messages.

I. INTRODUCTION

A distributed doubly linked list (or a bidirectional
ring) is a distributed data structure where each node
is connected by bidirectional links. Distributed doubly
linked lists are commonly used as a fundamental data
structure in structured peer-to-peer (P2P) networks, such
as Chord [1], Chord# [2], Skip graphs [3], SkipNet [4],
and their variants.

In distributed doubly linked lists, each node has
pointers, such as an IP address, to the next (successor)
and previous (predecessor) nodes. The difficulty of
designing algorithms for constructing distributed dou-
bly linked list is that they must consistently update
opposite-direction pointers on two physically distinct
nodes even in environments where multiple nodes may
simultaneously and independently try to insert or delete
themselves.

Several algorithms for constructing distributed dou-
bly linked lists are known, and most can be classified
as eventual consistency approaches, such as in [1], [5],
[6], or locking approaches, such as in [7], [8].

The eventual consistency approach is well known for
its use in the Chord algorithm [1]. Using this approach,
a linked list may temporarily be inconsistent after a node

This work was supported by JSPS KAKENHI (24500089).
†Deceased August 29, 2014.

insertion or deletion and it is recovered by a periodically
executed stabilizing procedure. While the benefit of
this approach is that it is simple and straightforward
to recover from failure, the drawback is that it does
not guarantee consistency with regard to lookups; some
nodes might be temporarily unreachable even when
there is no failure. This issue affects the accuracy of
Chord and other distributed hash tables (DHTs). A
DHT stores data at a node which is responsible for
the key, so it is desirable that lookups of the node
responsible for a key return consistent results. However,
in the eventual consistency approach, lookup results
may differ depending on the querying node.

In the locking approach, distributed locking tech-
niques are used for mutual exclusion of simultaneous
node insertion or deletion. When a node is to be inserted
or deleted, it first sends a lock request message to a
lock node (typically a neighbor node) to acquire a lock,
changes the links of the adjacent nodes, then finally
sends an unlock request message to the lock node to
release the lock. In this approach, pointers to the next
and previous nodes are consistently updated and all
inserted nodes can be looked up.

However, distributed locking has a drawback. In this
approach, a short locking duration is desired because
locking blocks insertion and deletion of other nodes.
However, in a distributed environment, the lock duration
may be long due to transmission delays. Furthermore,
the duration may be quite long if the node that acquired
the lock fails before sending an unlock request. In
this case, the lock must be forcibly released, usually
by a timeout. Implementations handling such cases are
troublesome in general.

In this paper, we propose a novel decentralized
algorithm, DDLL (Distributed Doubly Linked List) for
constructing distributed doubly linked lists. DDLL is
based on neither the eventual consistency approach nor
the locking approach. Instead, DDLL adopts a simple
strategy based on conflict detection and sequence num-
bers. In DDLL, next-node pointers are always correct.

Previous-node pointers are not always correct, but the
duration of the incorrect state does not exceed the
one-way message transmission time. The operations for
node insertion and deletion are atomic and all inserted
nodes can be looked up from any inserted node, even
if multiple node insertion or deletion are interleaved.

This paper is organized as follows. In the next sec-
tion, we review related work. Section III describes some
preliminaries. Section IV describes the DDLL algorithm
and Section V gives correctness proofs. Section VI
provides discussion and evaluation. Lastly, Section VII
summarizes this work.

II. RELATED WORK

Algorithms for distributed doubly linked lists, or
bidirectional rings, have been well studied in the field of
structured P2P networks. As described above, most con-
ventional algorithms can be classified as either eventual
consistency approaches or locking approaches.

There is a lot of work on eventual consistency
approaches, e.g., [1], [5], [6], [9] to name a few. As
described earlier, such approaches do not guarantee
consistency with regard to lookups.

Ghodsi [7] proposed Atomic Ring Maintenance. This
algorithm adopts the locking approach and has recov-
ery procedures to handle failures. It uses timeouts to
forcibly release remaining locks. It also considers the
case where timeout is premature. In such a case, a
stabilizing procedure similar to the one used in Chord
recovers incorrect links. This algorithm requires a FIFO
property in the underlying transport, so message order
must be preserved. Ghodsi has proved that lookup con-
sistency cannot be guaranteed in an asynchronous net-
work that partitions. Furthermore, it is also conjectured
that this assertion can be extended to an asynchronous
network without partitioning. From these impossibility
results, when we discuss lookup consistency in this
paper, no failure is assumed.

The protocol proposed by Li et al. [8] is another
locking-based protocol for maintaining a bidirectional
ring. They first present a protocol by which a node can
be inserted between two arbitrary nodes (i.e., the node
does not have a specific key) and later modify their
protocol to be used for Chord, where each node has a
key and must be inserted in a proper location. However,
they do not address recovery from failures.

Risson et al. [10] proposed a fault-tolerant active
ring protocol that guarantees consistency even in the
presence of failure. In this protocol, each insertion and
deletion is treated as a transaction and handled with
the Paxos Commit algorithm. The drawbacks of this

approach are its implementation difficulty and message
complexity.

In the field of parallel programming, Sundell et
al. [11] have proposed a lock-free deque based on dou-
bly linked list. In this algorithm, pointers to the next and
previous nodes are updated using the compare-and-swap
(CAS) instruction, which atomically modifies content
in a memory to a given new value if the content in a
memory equals a given old value. Sundell’s algorithm
and DDLL share the idea that use of the CAS(-like)
operation for updating the next-node pointer, but differ
in the following points: (1) For updating the previous-
node pointers, DDLL does not use CAS but employs
sequence numbers, which eliminates the necessity of
iterating CAS operations. (2) DDLL is for distributed
linked lists (rather than in-memory deques) and (3)
DDLL provides recovery procedure from failures.

III. PRELIMINARIES

DDLL constructs a distributed doubly linked list,
sorted by a node-specific key. Each node connects with
other nodes (or the node itself) by a right link and a
left link. We assume that rightward is the key-increasing
direction. We also assume that the linked list is circular,
so the right node of the node with the maximum key
is the node with the minimum key, and vice versa. A
doubly linked list can be considered as a combination
of two singly linked lists with opposite directions. We
call these singly linked lists rightward linked lists and
leftward linked lists.

Keys are elements of a totally ordered set. We
assume that each key is unique. A simple way to
eliminate duplicate keys is to add some random bits
on the right side of identical keys. The notation (a, b)
denotes the interval from a to b in a circular key space,
excluding a and b. The notations [a, b) and (a, b] are
similar but respectively include a and b.

Each node executes the same algorithm at an arbi-
trary speed. We do not assume Byzantine failures. We
assume that message delivery between nodes is reliable
but asynchronous; messages are eventually received, but
there is no bound on message delivery time. Unless
otherwise noted, we assume that message order is not
preserved (i.e., is non-FIFO).

We denote the key of node u by u as well. Each node
maintains several variables, including s (node status), l
(left link), r (right link), lseq (left sequence number), and
rseq (right sequence number). These are explained in the
sections below. To simplify the presentation, we do not
distinguish between a locator (such as an IP address)
and a key of a node. For example, l (resp., r) represents
both the locator and the key of the left (resp., right)

node. We denote a variable x on node u by u.x.

IV. THE DDLL ALGORITHM

A. Fundamental Idea

On either node insertion or deletion, the right link
of the immediate left node and the left link of the
immediate right node must be updated. We denote the
message for updating a right link of a remote node as
the SetR message and for updating a left link as the SetL
message.

1) Updating a Right Link: We denote the node to
be inserted or deleted by u, u’s left node by p, and u’s
right node by q. We would like for node p to accept a
SetR message from u only when no conflict occurs. We
would like to reject a SetR message if another node has
been inserted between p and q or if q has been deleted.
To detect conflicts, we use the fact that if another node
has been inserted between p and q, or if q has been
deleted, then p’s right link points to a node other than
q. Thus, we include the expected current right node of p
(denoted by rcur) in a SetR message. When p receives
the message, p compares rcur in the message with p.r.
If they are equal, p accepts the request and changes p.r
accordingly, but otherwise it indicates that conflicts have
occurred and p rejects the request. Using this method,
a right link can be updated in a controlled manner.

The rcur field checks whether the sender node u
knows the latest situation of the recipient node p and
effectively serializes simultaneous node insertion and
deletion in a rightward linked list without the necessity
of distributed locking.

2) Updating a Left Link: A left link should be
updated consistently with the corresponding right link.
We devised a novel method that allows a node to process
a SetL message delivered in an arbitrary order and
eliminates the necessity of distributed locking. When
a SetR message is accepted, a corresponding SetL
message is sent. Our idea is to assign a consistently
increased sequence number to a SetL message. For any
node x, whenever a new SetL message is sent to x, the
sequence number is increased. The sequence number
in a SetL message is used by the recipient node for
deciding whether the received message is newer than
the ones previously received. Each node maintains a
left sequence number lseq that is the maximum sequence
number for SetL messages received thus far. When node
x receives a SetL message, it compares the sequence
number of the message with x.lseq, and if the former is
larger than the latter, x changes its left link accordingly
and updates x.lseq.

Each node also maintains a sequence number for its
right node. This number is called the right sequence

TABLE I: Node status

Status Description

out the node is out of the linked list

ins waiting for the SetRAck/SetRNak message on insertion

in (at least) inserted into the rightward linked list

del waiting for the SetRAck/SetRNak message on deletion

number rseq. As we prove later in Theorem 1, for any
inserted node u, there exists exactly one inserted node
v that satisfies v.r = u. We denote such a node by
left(u). left(u) is u’s correct left node. When left(u)
is changed from node v to node w by node insertion
or deletion, v.rseq is incremented and transferred to w.
When any two nodes v and u that satisfies v.r = u are
in steady state (i.e., no message is in transmission to
them), v = u.l ∧ v.rseq = u.lseq holds (see Section V).

B. Detailed Algorithm

Pseudo code of the algorithm is shown in Fig. 1. We
use a notation similar to the abstract protocol notation
introduced in [12]. In this notation, the behavior of
a node is defined by the var section, the init sec-
tion, and a set of actions. Each action is of the form
⟨guard⟩ → ⟨statement⟩, delimited by []. The statement
of an action is executed only if the guard expression
is true. The execution of an action is atomic; no action
can be executed while another action is executing on
the same node. If multiple actions can be executed
on the same node, one of them is randomly selected
and executed. An assignment statement (:=) can assign
multiple values to multiple variables.

Each node u has a status u.s, which is initialized
to out. The possible statuses are listed in Table I and
explained below. We assume that a node drops all the
messages it receives when its status is out.

C. Creation

To create a new linked list, the initial node u (the
first node in the linked list) sends a message Create() to
u. In action A1, u initializes both the right and left links
to itself, u.s to in, and the right and left link sequence
numbers to 0.

D. Insertion

Let us assume that node u is going to be inserted
between node p and q, where p and q are respectively
u’s immediate left and right nodes and satisfies p.r =
q ∧ u ∈ (p, q). How u finds p and q is discussed later
in Section IV-F. We assume that both the initial p.rseq
and q.lseq are i (Fig. 2). To insert node u, u sends a
message Insert(p, q) to u. Then, the following actions

1 p r o c e s s u
2 var s : {out , i n s , in , d e l}
3 l , r : {p o i n t e r t o a node or n i l}
4 lseq , rseq : { i n t e g e r or n i l}
5 i n i t s = o u t ; l = r = n i l ; lseq = 0 ; rseq = n i l
6 begin
7 {Cr ea t e a l i n k e d l i s t }
8 (A1) r e c e i v e C r e a t e () from app →
9 l , r , s , lseq , rseq := u , u , in , 0 , 0

10 { I n s e r t be tween p and q}
11 [] (A2) r e c e i v e I n s e r t (p , q) from app →
12 i f (s ̸= o u t ∨ u ̸∈ (p, q)) then error ; f i
13 l , r , s := p , q , i n s
14 send SetR (u , r , lseq) to l
15 {D e l e t e}
16 [] (A3) r e c e i v e D e l e t e () from app →
17 i f (s ̸= i n) then error
18 e l s e i f (u = r) then { i n case o f t h e l a s t node}
19 s := o u t
20 e l s e s := d e l ; send SetR (r , u , rseq + 1) to l ; f i
21 [] (A4) r e c e i v e SetR (rnew , rcur , rnewseq) from v →
22 i f (s = i n ∧ r = rcur) then
23 i f (rnew = v) then { i n s e r t i o n case}
24 send SetL (rnew , rseq + 1) to r
25 e l s e { d e l e t i o n ca se}
26 send SetL (u , rnewseq) to rnew ; f i
27 send SetRAck (rseq + 1) to v
28 r , rseq := rnew , rnewseq

29 e l s e send SetRNak () to v ; f i
30 [] (A5) r e c e i v e SetRAck (rnewseq) from v →
31 i f (s = i n s) then
32 s , rseq := in , rnewseq

33 e l s e i f (s = d e l) then
34 s := o u t ; f i
35 [] (A6) r e c e i v e SetRNak () from v →
36 i f (s = i n s) then
37 s := o u t ; error {app r e t r i e s i n s e r t i o n l a t e r}
38 e l s e i f (s = d e l) then
39 s := i n ; error ; f i {app r e t r i e s d e l e t i o n l a t e r}
40 [] (A7) r e c e i v e SetL (lnew , seq) from v →
41 i f (lseq< seq) then l , lseq := lnew , seq ; f i
42 end

Fig. 1: DDLL algorithm (without optimization)

are executed.

(A2) u sets u’s left link and right link to p and
q, respectively. u also sets u.s as ins to indicate u is
inserting. u sends a SetR message to p, which contains
u (as the new right node), q (as the expected current
right node, or rcur), and zero (as the new right sequence
number, or rnewseq).

(A4) On receiving the SetR message, p checks
whether its status is in and rcur equals p.r. If the former
is false, either p has not received a SetRAck message
after its insertion (as we describe next, SetRAck mes-
sage is to inform that node insertion or deletion is
succeeded), or p has started its deletion. If the latter is
false, it indicates either that another node has inserted at
the right side of p, or that q has been deleted. In either
case, p rejects the request and sends a SetRNak message
to u to notify that the insertion failed. Otherwise, p
sends a SetL message to p’s right node (q in this case)
to update its left link to u. The SetL message contains

u (as the new left node) and p.rseq+1(= i+1) (as the
sequence number of the SetL message). Next, p sends
a SetRAck message to u to notify that the insertion
was successful. Because left(q) is changed from p to u,
the incremented right sequence number for q should be
transferred from p to u. For this purpose, the SetRAck
message contains p.rseq+1(= i+1). Finally, p changes
p.r to u and p.rseq to 0 (rnewseq). Because u’s right link
has already been set to q, the rightward linked list is
never interrupted, even for a moment. Note that at this
moment, p.rseq = u.lseq holds.

(A5) On receiving the SetRAck message, u confirms
that u is successfully inserted. Node u updates u.s to
in to indicate that u is inserted, and sets u.rseq to i+1.

(A7) On receiving the SetL message, q compares the
sequence number of the SetL message with q.lseq. If the
former is larger (we assume this case), q updates q.l to
u and q.lseq to i+1. Otherwise, q ignores the message.

In the scenario above, it is assumed that a SetRAck
message is sent to u in A4. If a SetRNak message is
sent (i.e., in the case of insertion failure), then (A6) u.s
is reverted to out and u retries the insertion procedure
from locating its insertion position.

Note that a node u might receive a SetL message
before receiving a SetRAck message. This happens,
for example, when another node is inserted between
p and u while the SetRAck message from p to u is
still in transmission. This is normal and the algorithm
can handle this situation. Actually we consider a node
u becomes inserted at the moment when a SetRAck
message is sent to u (see Section V).

Figure 3 depicts the situation where two nodes send
a SetL message to the same node. There are 4 nodes A,
B, C and D (A < B < C < D) and nodes A and D
are initially inserted. A.rseq and D.lseq are i. Nodes B
and C are then inserted in this order. When D receives
the SetL message from C, its left link is updated to C
and its left sequence number is updated to i+2. When
D later receives the SetL message from B, D ignores it
because its sequence number (i+1) is smaller than D’s
left sequence number (i+ 2). Thus, the receiving order
of the SetL message does not affect the final results.

E. Deletion

Let us assume that node u, which is inserted between
p and q, is going to be deleted. We also assume that both
p.rseq and u.lseq are i1 and that both u.rseq and q.lseq
are i2 (Fig. 4). To delete node u, u sends a message
Delete() to u. Then, the following actions are executed.

(A3) If u.s is not in, deletion is rejected because it is
uncertain whether u is inserted. If u is the last node (i.e.,

p q
p q

p q

u

p q

u
inserting

i

i

0 0
i

0
0

i+1

i+1

SetRAck(i+1)

u

SetR(u, q, 0)

change of topology exchange of
messages

insert between p and q

SetL(u, i+1)

u.s=ins

u.s=in

Fig. 2: Message sequence diagram of
node insertion

i

i

A B C
change of topology exchange of messages

D
A D

A D
B C

insert between A and Di

0
0

i
0

A D
B0

i+1

0

0
nil

SetR(B, D, 0)

left link is not changed
because i+1 < i+2

inserting

inserting

SetR(C, D, 0)

insert between
B and D

SetL(C, i+2)

D.lseq = i+2
SetRAck(i+2)A D

B C0
0

i+20
i+2

0

SetL(B, i+1)

SetRAck(i+1)

Fig. 3: A sequence where a node re-
ceives 2 SetL messages in reverse order

p qu

p q

p q SetL(p, i2+1)

p q

deleting

i1

i2

i2+1

i2+1

u

u

u

change of topology exchange of
messages

SetRAck(i1 +1)

i1
i2

i2+1

i2

u.s=del

u.s=out

delete

SetR(q, u, i 2+1)

Fig. 4: Message sequence diagram of
node deletion

in the case of u.r = u), then u is immediately deleted by
setting u.s to out. Otherwise, u sets u.s as del to indicate
u is deleting and sends a SetR message to p, which
contains q as the new right node, u as the expected
current right node, and u.rseq + 1 as the new right
sequence number. (The last node is specially handled
because otherwise the last node cannot be deleted; it
would receive a SetR message from itself while s = del
and reply with a SetRNak message.)

The following sequence is similar to the insertion
case and thus we omit the details. Note that after the
SetRAck and SetL messages are delivered, both p.rseq
and q.lseq will be correctly updated to i2 + 1.

F. Lookup and Traverse

As a fundamental data structure, distributed doubly
linked lists should support traversing. In DDLL, every
node that has been inserted during traversal can be
looked up by traversing the linked list either rightward
or leftward, as described below.

When traversing rightward, every node that has been
inserted during traversal can be visited from any inserted
node because right links are always correct in DDLL, as
we prove later in Theorem 1. When traversing leftward,
it should be considered that the left link of a node might
not point to the latest left node; when node u visits an
inserted node x to fetch the pointer of x’s left node
w (here we assume iterative routing), there might be
some inserted node in interval (w, x). To traverse such
a missed node, u should fetch w.r as well as w.l when
u visits w. If w.r is not equal to the previous node x,
then the node pointed to by w.r is a missed node and
u should visit it. Such temporary rightward traversal
continues until it encounters a node whose right link
points to (or passes over) x. However, such cases should
not be common, considering that a left link converges
quickly.

It should also be considered that traversing may
encounter a deleted node. For example, consider the

case where node u visits an inserted node x to fetch a
pointer of its right or left node y. When u visits y, y may
already have been deleted. Such cases are unavoidable if
iterative routing is used. In these cases, u simply restarts
traversing from x.

When recursive routing is used and the underlying
transport has the FIFO property, it is possible to traverse
the linked list without encountering a deleted node,
provided that the algorithm is properly modified. For
rightward traversal, the SetL message for node deletion
should be sent from the deleting node u, rather than u’s
left node, after u receives the SetRAck message. For
leftward traversal, while it is also possible to modify
the algorithm (it requires additional messages and we
omit the detail due to lack of space), practically it is
sufficient for a deleting node to have a grace period
after receiving the final SetRAck message. During the
grace period, a node forwards received messages to the
left node. Because there is always a chance for a node
to receive messages after the grace period expires, some
retransmission mechanism should be used as well.

As described in Section IV-B, to insert a node u,
u needs pointers to the immediate left and right nodes.
These nodes can be looked up by traversing the linked
list until reaching the node x that satisfies u ∈ (x, x.r).
The immediate left and right node of u are x and x.r,
respectively. It is not necessary to visit x’s right node.

G. Optimization

Let us consider the case where multiple nodes are
simultaneously trying to be inserted between the same
two nodes. Such massive insertion is seen in some P2P
data structures such as skip graphs or Chord#, where
not a physical node but each data item is inserted in
the structure. In such cases, all but one of the inserting
nodes will fail and retry insertion. We describe a method
for improving performance in such cases.

Consider the case where node u tries to be inserted
between p and q, and p replies with a SetRNak message

to u because of a current right node mismatch. Let us
denote p’s right node at this moment by x. If u ∈ (p, x)
holds, obviously u should retry insertion between p and
x. Thus in this case, u obtains x through the SetRNak
message from p and skips the procedure for locating u’s
next insertion position. If u ̸∈ (p, x) holds, u locates its
insertion position by traversing rightward from x. (If p
replies with a SetRNak message not because of a right
node mismatch, x in the SetRNak message should be nil
and u retries normally.) The effect of this optimization
is evaluated in Section VI.

H. Handling Failures

In a real network, nodes may fail and messages
may be lost. In this subsection, we loosen the initial
assumption and allow node failures and message loss
and describe how the algorithm should be extended for
handling such failures.

We use timeouts for detecting failure. Because failed
nodes are indistinguishable from slow nodes, we must
allow that nodes may be erroneously suspected to have
failed. We consider crash, omission and timing failure.
As described in Section II, consistent lookup is im-
possible in the presence of failure. In DDLL, lookup
consistency is preserved only if there is no network
partition and no erroneously suspected node.

When a node p fails, the right node of p (denoted
by u) conducts the recovery procedure. This is because
we would like the sequence number of a SetL message
sent to u to be increased monotonically. We discuss the
sequence number at recovery in Section IV-H3.

1) Recovery Procedure: Here, we describe the re-
covery procedure at node u. When u.s is in, u period-
ically executes the following procedure.

1) Find the live node v that is closest to u and on
its left. This procedure is called findLiveLeft() and
discussed in Section IV-H2.

2) Obtain v.r and v.rseq from v.
3) If (v = u.l∧v.r = u∧v.rseq = u.lseq), no recovery

procedure is required.
4) Otherwise, u tries to connect u and v. Namely, u

changes u.l to v, u.lseq to i, and sends SetR(u, v.r,
i) to v, where i denotes the new sequence number
assigned to the link between v and u. The value
of i is discussed in Section IV-H3. Node v handles
the SetR message in the same manner described in
Fig. 1, with the exception that no SetL message
is sent. The SetR message should be extended to
indicate whether the message is for recovery or not.

5) If u receives a SetRAck message from v, the recov-
ery procedure completes. If u receives a SetRNak
message (which means another node is inserted at

x z(a) y x z
y

(c)

x z
y

(d)

x z
y

(e)
falsely suspected by z

x z(b) y
unnoticed by z
f1 f2

failed failed

Fig. 5: Recovery from incorrect findLiveLeft() results

the right side of v after u retrieves v.r, or v has
started its deletion), or does not receive a message
within a timeout period, u retries the recovery
procedure from the first step after waiting for a time.

2) Finding the Closest Inserted Live Node on the
Left: We describe how to implement findLiveLeft(),
which finds the closest inserted live node on the left.
We assume that each node u maintains a neighbor node
set N , which contains a sufficient number of pointers
to the left-side nodes, including u.l. We start from the
closest live inserted node found in u.N and traverse the
linked list rightward, until encountering a node whose
right link either points to a failed node, points to u, or
passes over u.

1) v := the closest live node in u.N where v.s is in.
If no such node exists, v := u.

2) if (v.r fails ∨ u ∈ (v, v.r]) then return v.
3) v := v.r and go to Step 2.

The procedure above does not always find the closest
inserted live node. Consider the case where node z
executes findLiveLeft(). Node z may falsely detect an
inserted live node y as failed due to a temporary network
failure (Fig. 5a). Also, z may not notice an inserted live
node y that is sandwiched by two failed nodes and not
yet in z.N (Fig. 5b). In such cases, y is excluded from
the linked list by the recovery procedure at z (Fig. 5c,
which depicts the state after Fig. 5a).

This situation is eventually recovered (if false detec-
tion is ceased). When y executes the recovery procedure,
y will find the right link of x, the closest inserted live
node on the left side, does not point to y. Thus y
changes y.l to x and sends a SetR message to x to
change x.r to y (Fig. 5d). Then, when z executes the
recovery procedure, z will find y by traversing rightward
from x and correct the links (Fig. 5e).

3) Sequence Number of a Recovered Link: Here, we
discuss the sequence number of a recovered link. We
consider the following scenario: Nodes A, B and C
(A < B < C) are inserted. Let B.rseq and C.lseq be
i. Then, node X is inserted between B and C, and B
fails. Note that X.rseq is i + 1. C starts the recovery
procedure before the SetL message from X arrives at
C. findLiveLeft() at C fails to find X but finds A, so
C sends a SetR message to A to update A.r to C. If

C naively assigns C.lseq + 1 (= i+ 1) as the sequence
number to the link between A and C, both A and X
would have the same right node (C) and the same right
sequence number (i + 1). This implies that sequence
numbers of SetL messages subsequently sent to C
would no longer be monotonically increased. (Consider
the case where another node is inserted between A and
C or X and C.)

To make sure that a left link is consistent with
the corresponding right link after recovery, we extend
a sequence number to the form (g, s). The s part is
updated in the same manner described in the previous
sections. The g part is initially zero and increased only
when a link is repaired. Namely, when node u repairs
a link, (u.lseq.g + 1, 0) is used both as rnewseq of the
SetR message to v and as u.lseq. When comparing two
sequence numbers (e.g. line 41 in Fig. 1), the g part
is first compared and if they are same the s part is
compared.

This scheme guarantees that once node u recovers a
rightward link toward u (i.e., finds a live left node v and
updates v.r to point to u), then u only accepts a SetL
message for node insertion or deletion on the recovered
right link. For example, if C receives the SetL message
whose sequence number equals (0, i+ 1) from B after
incrementing C.lseq to (1, 0), C ignores the message.
Note that X is excluded from the linked list, but it
eventually returns to the linked list by executing the
recovery procedure at X .

4) Failures on Insertion and Deletion: We first con-
sider the case where node y is trying to insert between
two adjacent nodes x and z. Because x might fail, if y
receives no response message within a timeout period
after sending a SetR message, y must retry the insertion
procedure, from locating its insertion position. Here, we
have to consider the case where x is in fact alive and
messages are simply delayed or lost.

(Case 1) When y retries its insertion and searches for
its insertion position, y may notice that y has already
been inserted. This happens if the SetRAck message
from x is delayed or lost. In this case, y changes y.s
to in and y.rseq to zero. Because this y.rseq (zero)
is incorrect (it would have been set by the SetRAck
message from x), successive SetL messages to z, caused
by another node insertion between y and z for example,
may be ignored. This situation is recovered by the
recovery procedure of z. Note that continuity of the
rightward linked list is still preserved even in this case.

(Case 2) y may receive a delayed SetRAck or
SetRNak message from x after y sends another SetR
message for a retry. To avoid confusion, y should ignore
such a delayed response. This is easily achieved by

assigning some ID to a SetR message and including
the ID in the corresponding SetRAck and SetRNak
message. When a node receives a SetRAck or SetRNak
message, the node drops it if the ID does not match with
the one that the node sent in the latest SetR message.

We next consider the case where node y, which is
inserted between nodes x and z, is trying to delete itself
and no response message is received from x within a
timeout period. In this case, y acts as if the SetRAck
message is received. Here, x.r would point to an deleted
node (y) if x does not receive the SetR message from
y, but this situation would be recovered by the recovery
procedure at z.

V. CORRECTNESS

Here, we prove the correctness of the insertion and
deletion algorithm, in absence of failure. (To prove the
correctness of the recovery procedure is one of our
future work.)

Let m−(m,x) denote the number of incoming mes-
sages of type m to node x. We define the following
predicates for node x.

inserted(x) ≡ ((x.s = ins ∧m−(SetRAck, x) > 0)

∨(x.s = in)∨(x.s = del∧m−(SetRAck, x) = 0))

When inserted(x) = true, we say node x is
inserted. An inserted node is a node that is (at least)
inserted to a rightward linked list.

In DDLL, the right link of an inserted node always
points to the closest inserted node on the right side. This
is expressed in the following theorem.

Theorem 1. Let V be the set of all nodes (both inserted
and uninserted). Then, the following proposition holds.

∀x ∈ V, inserted(x) → P (x) ∧Q(x)

where P (x) = (!y ∈ V, inserted(y) ∧ (y ∈ (x, x.r))
and Q(x) = inserted(x.r).

Let us begin by proving the following lemmas.

Lemma 1. At the moment when a node y is successfully
inserted at the immediate right of node x, y ∈ (x, z)
holds, where z denotes the right node of x just before
y is inserted.

Proof: We observe the following: (1) An uninserted
node becomes inserted only by receiving a SetRAck
message. (2) A SetRAck message is sent only in action
A4, in response to a SetR message. (3) An uninserted
node sends a SetR message only in action A2. (4) To
make x send a SetRAck message to y, y must send a
SetR message to x whose rcur equals z.

x z

SetRAck

SetR(y, z)

T0

T1
A4

y.s=ins

y is inserted

y

y.s=in

A2

insert between
x and z x z

SetRAck

SetR(q, u)

T0

T1
A4

y.s=del

y is uninserted

y

y.s=out

A3
delete

(a) insertion (b) deletion

Fig. 6: Figures for the proof of Lemmas 2 and 3.
Parameters regarding sequence numbers are omitted.

These observations imply that p = x and q = rcur =
z hold in action A2. Considering this and the condition
at line 12, y ∈ (x, z) holds.

Lemma 2. If a node y ∈ V tries to insert itself and
sends a SetR message to an inserted node x ∈ V , and
if Theorem 1 holds at T0, where T0 denotes the moment
when x receives the SetR message, and if x sends a
SetRAck message to y, then P (x)∧Q(x)∧P (y)∧Q(y)
holds at T1, where T1 denotes the moment when x
finishes action A4.

Proof: Let us assume that y is trying to insert
between x and some node z. According to action A2,
y.r equals z and rcur of the SetR message equals z.
Because we assume that y receives a SetRAck message
from x, x’s right link points to z at T0. Given that
Theorem 1 holds at T0, no inserted node exists in (x, z)
and z is inserted at T0 (Fig. 6a).

Because an action is atomically executed, A4 should
be the only action executed at x between T0 and T1. At
T1, because (m−(SetRAck, y) > 0) ∧ (y.s = ins) ∧
(x.r = y) holds, y is inserted, and Q(x) holds. Also at
T1, Q(y) holds because y.r = z and z is still inserted.

Considering Lemma 1, it is also understood that
P (x) holds at T1 because no inserted node exists in
(x, x.r (= y)) and P (y) holds because no inserted node
exists in (y, y.r (= z)).

Lemma 3. If a node y ∈ V tries to delete itself and
sends a SetR message to an inserted node x ∈ V and if
Theorem 1 holds at T0, where T0 denotes the moment
when x receives the SetR message, and if x sends a
SetRAck message to y, then P (x) ∧ Q(x) holds at T1,
where T1 denotes the moment when x finishes action
A4.

Proof: Let us assume that y.r = z. According to
action A3, rcur of the SetR message equals y. Because
we assume that y receives a SetRAck message from x,
x’s right link points to z at T0. Given that Theorem 1
holds at T0, no inserted node exists both in (x, y) and
in (y, z), and z is inserted at T0. (Fig. 6b).

We can say that node z is inserted at T1 by observing
the following: (1) To make z uninserted, z must execute
A3 and send a SetR message to an inserted node whose
right link points to z and receives a SetRAck message.
(2) y is the only node whose right link points to z at
T0, because Theorem 1 holds at T0. (3) Because y.s =
del after y sends a SetR message to x, if y receives a
SetR message from z, y sends a SetRNak (rather than
a SetRAck) message to z.

At T1, because m−(SetRAck, y) > 0 and y.s = del
hold, y is uninserted and thus no inserted node exists in
(x, z). Also because x.r = z and z is inserted, P (x) ∧
Q(x) holds at T1.

Proof of Theorem 1: We observe the following: (1)
This theorem is true in the state where only the initial
node is inserted. (2) The correctness of the theorem is
affected only by node insertion and deletion. (3) Cases
where a SetRNak message is sent do not affect the
correctness of the theorem. (4) An uninserted node be-
comes inserted and an inserted node becomes uninserted
only by receiving a SetRAck message (except the initial
and the last node). (5) A SetRAck message is sent only
in response to a SetR message.

These observations indicate that Lemmas 2 and 3
are sufficient to prove this theorem.

The next theorem states the correctness of the al-
gorithm with regard to left links. In this theorem, we
assume that each action is executed instantaneously (i.e.,
when a node receives a SetR message, a SetRAck or a
SetRNak message is instantly sent).

Theorem 2. For any inserted node u, if there is no SetL
messages to u in transmission, u.l points to left(u).

Proof: We observe the following: (1) When a node
u becomes inserted u.lseq = v.rseq (= 0) holds, where
v = left(u) (see Fig. 2). (2) When a node x receives
a SetL message, x.l is updated iff the parameter seq is
larger than x.lseq, which is the maximum seq that x has
received thus far (A7). (3) Whenever left(u) is changed,
a SetL message is sent to u (A4).

Therefore, it suffices to show that when left(u)
changes from p to q, the seq of the corresponding SetL
message sent to u is larger than p.rseq. This is easily
shown by the following observation: In the case of either
insertion or deletion, when left(u) is changed from p to
q, q.rseq is updated to p.rseq + 1 and is used as seq of
the SetL message sent to u (see Figs. 2 and 4).

It is also clear that (1) for adjacent nodes v and
u (v.r = u), u.lseq equals v.rseq if there is no SetL
message to u in transmission, and that (2) the duration
for which the left link of a node points to an incorrect

node is bound by the max one-way message transmis-
sion time.

VI. DISCUSSION AND EVALUATION

A. Deadlock and Livelock

DDLL is deadlock-free because it does not use
explicit locking. However, it is not free of livelocks.
For example, if all nodes try to delete at the same time
each receives a SetRNak message, so no node can be
deleted. This situation can be easily avoided by using
randomness for the retry period.

B. Implementing DHT using DDLL

DDLL can be used as a foundation of ring-based
DHTs. When implementing a DHT using DDLL, each
node u should be responsible for the range [u, u.r). The
reason is that, when u receives a put or get request for
some data d, u can check whether u is responsible for
d because u always has a correct right link. u accepts
the request only if d’s key is in [u, u.r) and otherwise
rejects it or forwards it to the proper node. In this way,
it can be ensured that a request is always directed to the
responsible node.

C. Simulation

To evaluate the performance of DDLL, we have
implemented a discrete event simulator that simulates
the DDLL, Atomic Ring Maintenance (abbreviated as
Atomic) [7], Li’s algorithm for Chord rings [8] and
Chord [1]. In the simulation, the following assumptions
are made: nodes do not fail, message transmission is
reliable, and message order is preserved. (The last con-
dition is required by the Atomic algorithm.) Messages
received are processed instantly (zero-time).

We first conducted the following simulation for each
algorithm: insert an initial node p and then, insert n
nodes simultaneously and measure the time and number
of messages required until all links are converged. The
keys and insertion order of n nodes are randomly
selected. Each node looks up its insertion position by
traversing the linked list rightward, starting from p.
The number of messages includes messages used for
locating insertion position. We vary n from 0 to 100.
Each experiment is iterated 50 times to obtain average
values. All messages are transmitted in abstract constant
time T = 1.

We use recursive routing in the traversal; a lookup
message is forwarded to a neighbor node until reaching
the proper node and the result is sent directly to the
originating node. We omit the finger table in Li’s
algorithm and Chord to evaluate all algorithms under
the same conditions. Algorithm-specific details are as

follows:

(DDLL) DDLL(Opt) and DDLL(NoOpt) are imple-
mented, which respectively represent DDLL with and
without the optimization described in Section IV-G.

(Li’s algorithm) In the original algorithm, a busy node
cannot forward a message rightward because the right
link of a busy node may be not initialized. To make such
forwarding possible, we made a small enhancement,
which does not affect the correctness of the algorithm;
when a node u is trying to insert between p and q, u
sets u.r to q prior to sending a join request to q.

(Chord) To reduce the time for completion of insertion,
we use 10 as the stabilization period, which is excessive
short considering T = 1.

In all algorithms except DDLL(Opt), when a node
receives a SetRNak or a retry message, it retries in-
sertion after waiting some period. From the results
of preliminary experiments, we use a random value
chosen from [0, T] as a waiting period to reduce the
average insertion time. Also, to speed up locating a
insertion position for the next retry, we traverse the
linked list rightward from the previous predecessor
candidate node, except in Atomic (in Atomic, leftward
from the previous successor candidate node).

The results are shown in Figs. 7 and 8. DDLL(Opt)
outperforms other algorithms in terms of both time
and number of messages. Except in Chord, the time
required for insertion increases logarithmically. This can
be explained as follows: when m nodes simultaneously
compete for insertion between the same nodes, one node
is successfully inserted and the other m − 1 nodes
retry. Next time (m − 1)/2 nodes compete and thus
the number of retries is roughly the logarithm of m. In
DDLL(Opt), the average number of insertion attempts
also increases logarithmically. At n = 10 and n = 100,
the numbers are around 3.39 and 7.46, respectively.

We next evaluated the performance of DDLL and
locking-based algorithms in the environment where
nodes have non-uniform network latencies. We clas-
sified nodes in two groups NL and NH , which re-
spectively represent low-latency and high-latency nodes.
We assumed that nodes are connected in a simple star
topology where the latency from the center to a NL-
nodes is 0.5T and to a NH -nodes is 2T . Thus, latencies
among NL-nodes are T , between NL and NH -nodes
are 2.5T , and among NH nodes are 4T . We fixed the
number of nodes to 50 and vary the ratio of high-
latency nodes. Other conditions are the same to the
first experiment. We measured the insertion time of each
node and plotted the 50th and 90th percentiles.

The results are shown in Fig. 9. In general,

0

20

40

60

80

100

120

0 20 40 60 80 100

tim
e

of simultaneously inserting nodes

DDLL(Opt)
DDLL(NoOpt)

Atomic
Li's

Chord

Fig. 7: Node insertion time vs. num-
ber of simultaneously inserted nodes.
Time in Chord is approximately
9.9n.

0

1

2

3

4

5

0 20 40 60 80 100

#
of
m
es
sa
ge
s
(x
10
00
)

of simultaneously inserting nodes

DDLL(Opt)
DDLL(NoOpt)

Atomic
Li's

Chord

Fig. 8: Total number of messages vs.
number of simultaneously inserted
nodes. The number of messages in
Chord is approximately 2.95n2.

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

tim
e

high-latency node ratio (%)

DDLL(Opt)
DDLL(NoOpt)

Atomic
Li's

Fig. 9: Node insertion time vs. high-
latency node ratio. Thick and thin
lines represent 50th and 90th per-
centiles, respectively.

DDLL(Opt) outperforms in all ratios. We observe
a slight increase in the 90th percentiles line of
DDLL(Opt) around the ratio between 20% and 60%
(depicted by an arrow in the figure). This increase
is caused by the reinsertion of high-latency nodes. In
DDLL, to insert a node u successfully between nodes
p and p’s right node q, p’s right node should not be
changed in the duration from the moment when u
obtains the pointer of q from p, to the moment when p
receives a SetR message from u. Because the duration
of a high-latency node is longer than that of a low-
latency node, insertion of a high-latency node tends to
be interrupted by low-latency nodes.

D. Implementation Example

We have implemented the DDLL algorithm in the
open source P2P platform PIAX [13] and it has been
used as a foundation of our fault-tolerant skip graph and
Chord# implementations.

VII. CONCLUSION

We have proposed a novel decentralized algorithm
DDLL for constructing a distributed doubly linked list.
To the best of our knowledge, it is the first algorithm that
is based on conflict detection and sequence numbers.
In DDLL, next-node pointers are always correct even
while multiple nodes are simultaneously being inserted
or deleted and thus, any inserted node can be looked
up from any inserted node. The algorithm is simple,
thanks to not using distributed locking. It provides
recovery procedure from failures. It is efficient, in terms
of both number of messages and time required for
node insertion. It does not require the FIFO property
for the underlying transport so it can be easily imple-
mented using UDP, which is NAT-traversal friendly. We
therefore conclude that DDLL is a good foundation for
implementing structured P2P systems based on doubly

linked lists or bidirectional rings.

Future work includes to prove the correctness of
recovery procedure and evaluate the algorithm under
various failure situations.

REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A scal-
able peer-to-peer lookup protocol for internet applications,”
IEEE/ACM Trans. on Net., vol. 11, no. 1, pp. 17–32, 2003.

[2] T. Schütt, F. Schintke, and A. Reinefeld, “Range queries on
structured overlay networks,” Computer Commun., vol. 31,
no. 2, pp. 280–291, 2008.

[3] J. Aspnes and G. Shah, “Skip graphs,” ACM Trans. on Algo-
rithms, vol. 3, no. 4, pp. 1–25, 2007.

[4] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman, “SkipNet: a scalable overlay network with practical
locality properties,” in Proc. of 4th conf. on USENIX Sympo.
on Internet Technologies and Systems, 2003, pp. 113–126.

[5] T. Clouser, M. Nesterenko, and C. Scheideler, “Tiara: A self-
stabilizing deterministic skip list and skip graph,” Theor. Com-
put. Sci., vol. 428, pp. 18–35, 2012.

[6] R. Jacob, A. Richa, C. Scheideler, S. Schmid, and H. Täubig,
“Skip+: A self-stabilizing skip graph,” J. ACM, vol. 61, no. 6,
pp. 36:1–36:26, 2014.

[7] A. Ghodsi, “Distributed k-ary System: Algorithms for dis-
tributed hash tables,” PhD Dissertation, KTH—Royal Institute
of Technology, 2006.

[8] X. Li, J. Misra, and C. G. Plaxton, “Concurrent maintenance of
rings.” Distributed Comp., vol. 19, no. 2, pp. 126–148, 2006.

[9] A. Shaker and D. Reeves, “Self-stabilizing structured ring
topology p2p systems,” in Proc. of 5th IEEE Intl. Conf. on
P2P Computing, 2005, pp. 39–46.

[10] J. Risson, K. Robinson, and T. Moors, “Fault tolerant active
rings for structured peer-to-peer overlays,” in Proc. of 30th Ann.
IEEE Conf. on Local Computer Networks, 2005, pp. 18–25.

[11] H. Sundell and P. Tsigas, “Lock-free and practical doubly
linked list-based deques using single-word compare-and-swap,”
in Principles of Distributed Systems, ser. LNCS. Springer
Berlin Heidelberg, 2005, vol. 3544, pp. 240–255.

[12] Mohamed G. Gouda, Elements of Network Protocol Design.
John Wiley and Sons, 1998.

[13] Y. Teranishi, “PIAX: Toward a Framework for Sensor Overlay
Network,” in Proc. of CCNC’09, 2009, pp. 1–5.

